Search results for "MAP Kinase Signaling System"

showing 10 items of 104 documents

The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphopr…

2016

Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of pho…

0106 biological sciences0301 basic medicineMAPK/ERK pathwayLichensPhysiologyMAP Kinase Signaling SystemMembrane lipidsPlant ScienceBiology01 natural sciencesDesiccation toleranceDephosphorylation03 medical and health scienceschemistry.chemical_compoundMembrane LipidsChlorophytaOsmotic PressureMicroalgaePhospholipase DPhosphorylationProtein kinase ADehydrationPhospholipase DKinaseCell BiologyGeneral MedicinePhosphatidic acidPhosphoproteinsAdaptation Physiological030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlantcell physiology
researchProduct

AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase

2011

International audience; The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapi…

0106 biological sciencesMAPK/ERK pathwayTime FactorsMAP Kinase Signaling SystemPhysiologyNicotiana tabacumLotus japonicusPlant ScienceComplex MixturesBiology01 natural sciences03 medical and health sciencesPlant CellsTobaccoBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosisNicotiana plumbaginifoliaPlant Proteins030304 developmental biologyMitogen-Activated Protein Kinase Kinasesarbuscular-mycorrhizal fungi0303 health sciencesdiffusible factorcalciumKinasefungiArbuscular-mycorrhizal fungi; Signaling; Diffusible factor; MAPK; Calciumfood and beveragesSpores FungalPlant cellbiology.organism_classificationMAPKsym pathwayCell biologyCytosolCell cultureLotus[SDE.BE]Environmental Sciences/Biodiversity and Ecologysignaling010606 plant biology & botanyPlant Physiology and Biochemistry
researchProduct

Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDL-stimulated human monocytes: implications for atherosclerosis.

2016

The first ATP-competitive p38α MAPK/MAPK14 inhibitor with excellent in vivo efficacy and selectivity, skepinone-L, is now available. We investigated the impact of selective p38α MAPK/MAPK14 inhibition on enzymatically modified LDL (eLDL) stimulated human monocytes with its implications for atherosclerosis. Among the different p38 MAPK isoforms, p38α/MAPK14 was the predominantly expressed and activated isoform in isolated human peripheral blood monocytes. Moreover, eLDL colocalized with macrophages positive for p38α MAPK/MAPK14 in human carotid endarterectomy specimens. Using the human leukemia cell line THP-1 and/or primary monocyte-derived macrophages, skepinone-L inhibited eLDL-induced ac…

0301 basic medicineAdultMaleChemokineMAP Kinase Signaling Systemp38 mitogen-activated protein kinasesCD36CCL4Dibenzocycloheptenes030204 cardiovascular system & hematologyBiochemistryGene Expression Regulation EnzymologicMonocytesMitogen-Activated Protein Kinase 1403 medical and health sciences0302 clinical medicineCell Line TumorGeneticsHumansInterleukin 8Molecular BiologyFoam cellMAPK14AgedAged 80 and overCaspase 7biologyChemistryCaspase 3Cholesterol LDLAtherosclerosisMolecular biology030104 developmental biologyBiochemistryMitogen-activated protein kinasebiology.proteinFemaleBiotechnologyFASEB journal : official publication of the Federation of American Societies for Experimental Biology
researchProduct

The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Background Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. Methods DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional…

0301 basic medicineCancer ResearchColorectal cancerApoptosisMiceSettore BIO/13 - Biologia ApplicataGene Regulatory NetworksMolecular Targeted TherapyCitrus-limon nanovesicleTransfectionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Oncology; Cancer ResearchOncologyPhospholipasesCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Animals; Antineoplastic Agents; Apoptosis; Cell Line Tumor; Cell Proliferation; Colorectal Neoplasms; Computational Biology; Disease Models Animal; Female; Gene Expression Profiling; Gene Ontology; Gene Regulatory Networks; Gene Silencing; Humans; MAP Kinase Signaling System; Mice; Phospholipases; Signal Transduction; Xenograft Model Antitumor Assays; Biomarkers Tumor; Molecular Targeted TherapyFemaleColorectal NeoplasmsSignal TransductionMAP Kinase Signaling SystemAntineoplastic Agentslcsh:RC254-282Citrus-limon nanovesicles03 medical and health sciencesDownregulation and upregulationIn vivoCell Line TumorBiomarkers TumormedicineAnimalsHumansGene silencingGene SilencingPhospholipase DDHD1Cell Proliferationbusiness.industryCell growthGene Expression ProfilingResearchComputational BiologyCancermedicine.diseaseXenograft Model Antitumor AssaysColorectal cancerDisease Models AnimalGene Ontology030104 developmental biologyApoptosisCancer researchbusiness
researchProduct

The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer

2018

Background CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels. Methods The expression of CDCP1, PDGFRβ and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines. Knock-down of PDGFRβ was e…

0301 basic medicineCancer ResearchMAP Kinase Signaling SystemCDCP1medicine.medical_treatmentPDGFRβPDGF-BBBecaplerminTriple Negative Breast NeoplasmsBiologylcsh:RC254-282Targeted therapyReceptor Platelet-Derived Growth Factor beta03 medical and health sciences0302 clinical medicineFISHDownregulation and upregulationWestern blotAntigens CDAntigens NeoplasmCell Line TumorGeneticsmedicineHumansRNA Small InterferingReceptorTriple-negative breast cancerMitogen-Activated Protein Kinase 1Tumor microenvironmentMitogen-Activated Protein Kinase 3ERK1/2medicine.diagnostic_testMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensNeoplasm ProteinsUp-RegulationGene Expression Regulation Neoplastic030104 developmental biologyOncologyGene Knockdown Techniques030220 oncology & carcinogenesisCDCP1Cancer researchImmunohistochemistryFemaleCell Adhesion MoleculesTNBCResearch ArticleIHCBMC Cancer
researchProduct

Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming.

2016

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition…

0301 basic medicineDynaminsSomatic cellMAP Kinase Signaling SystemScienceCèl·lulesCellInduced Pluripotent Stem CellsKruppel-Like Transcription FactorsGeneral Physics and AstronomyBiologyMitochondrionMitochondrial DynamicsGeneral Biochemistry Genetics and Molecular BiologyMitocondrisArticleCell LineProto-Oncogene Proteins c-myc03 medical and health sciencesKruppel-Like Factor 4MiceMitophagymedicineAnimalsPhosphorylationInduced pluripotent stem cellGeneticsMultidisciplinarySOXB1 Transcription FactorsQGeneral ChemistryCellular ReprogrammingCell biologyMitochondria030104 developmental biologymedicine.anatomical_structurePhosphorylationMitochondrial fissionReprogrammingOctamer Transcription Factor-3Nature communications
researchProduct

Cryptochlorogenic acid attenuates LPS-induced inflammatory response and oxidative stress via upregulation of the Nrf2/HO-1 signaling pathway in RAW 2…

2019

Phenolic acids are found in natural plants, such as caffeic acid, rosmarinic acid, and chlorogenic acid. They have long been used as pharmacological actives, owing to their anti-inflammatory and antioxidant activities. Cryptochlorogenic acid (CCGA) is a special isomer of chlorogenic acid; the pharmacological effects and related molecular mechanisms of CCGA have been poorly reported. In the present study, the antioxidant and anti-inflammatory effects of CCGA in RAW 264.7 macrophages and the underlying mechanisms were investigated. The results revealed that CCGA dose-dependently inhibited LPS-induced production of NO, TNF-α, and IL-6 and blocked iNOS, COX-2, TNF-α, and IL-6 expressions. CCGA …

0301 basic medicineLipopolysaccharidesAntioxidantMAP Kinase Signaling SystemNF-E2-Related Factor 2medicine.medical_treatmentImmunologyAnti-Inflammatory AgentsIκB kinasemedicine.disease_causeAntioxidants03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinemedicineCaffeic acidImmunology and AllergyAnimalsPharmacologyInflammationRosmarinic acidMacrophagesNF-kappa BMembrane ProteinsNF-κBGlutathioneCell biologyI-kappa B KinaseOxidative Stress030104 developmental biologyRAW 264.7 Cellschemistry030220 oncology & carcinogenesisSignal transductionChlorogenic AcidInflammation MediatorsOxidative stressHeme Oxygenase-1Signal TransductionInternational immunopharmacology
researchProduct

VEGF-R2/Caveolin-1 Pathway of Undifferentiated ARPE-19 Retina Cells: A Potential Target as Anti-VEGF-A Therapy in Wet AMD by Resvega, an Omega-3/Poly…

2021

Age-related macular degeneration (AMD) is one of the main causes of deterioration in vision in adults aged 55 and older. In spite of therapies, the progression of the disease is often observed without reverse vision quality. In the present study, we explored whether, in undifferentiated ARPE-19 retinal cells, a disruption of the VEGF receptors (VEGF-R)/caveolin-1 (Cav-1)/protein kinases pathway could be a target for counteracting VEGF secretion. We highlight that Resvega®, a combination of omega-3 fatty acids with an antioxidant, resveratrol, inhibits VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation.…

0301 basic medicineMAP Kinase Signaling SystemAngiogenesisQH301-705.5Caveolin 1Drug Evaluation PreclinicalresveratrolResveratrolAMDRetinaArticleCatalysisCell LineVEGF-receptorInorganic ChemistryMacular Degeneration03 medical and health scienceschemistry.chemical_compoundangiogenesis0302 clinical medicinemedicineHumansSecretionPhysical and Theoretical ChemistryBiology (General)Molecular BiologyQD1-999SpectroscopyRetinaomega-3 fatty acidsKinaseOrganic Chemistryocular diseasesRetinalGeneral MedicineVascular Endothelial Growth Factor Receptor-2VEGFIn vitroComputer Science ApplicationsTranscription Factor AP-1Chemistry030104 developmental biologymedicine.anatomical_structurechemistry030220 oncology & carcinogenesisCaveolin 1Cancer researchInternational Journal of Molecular Sciences
researchProduct

CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC

2019

Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…

0301 basic medicineMAPK/ERK pathwayCancer ResearchLung NeoplasmsDrug ResistanceDrug resistanceTransgenicMiceChemokine receptor0302 clinical medicineNeoplasmsCarcinoma Non-Small-Cell LungReceptorsMedicineNon-Small-Cell LungCXCRReceptorLungbeta-ArrestinsCancerEGFR inhibitorsTumorKinaseLung CancerErbB ReceptorsOncology5.1 Pharmaceuticals030220 oncology & carcinogenesisDevelopment of treatments and therapeutic interventionsTyrosine kinaseEpithelial-Mesenchymal TransitionMAP Kinase Signaling SystemOncology and CarcinogenesisMice TransgenicArticleCell LineExperimental03 medical and health sciencesClinical ResearchCell Line TumorAnimalsHumansOncology & CarcinogenesisProtein Kinase InhibitorsReceptors CXCRbusiness.industryCarcinomaNeoplasms Experimentalrespiratory tract diseases030104 developmental biologyProtein kinase domainDrug Resistance NeoplasmMutationCancer researchNeoplasmbusinessCancer Research
researchProduct

Autocrine CCL5 Effect Mediates Trastuzumab Resistance by ERK Pathway Activation in HER2-Positive Breast Cancer.

2020

Abstract HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis. Using continued exposure of a HER2-positive cell line to trastuzumab, we generated a model of acquired resistance characterized by increased expression …

0301 basic medicineMAPK/ERK pathwayCancer ResearchMAP Kinase Signaling SystemReceptor ErbB-2medicine.medical_treatmentMice NudeApoptosisBreast NeoplasmsCCL5Metastasis03 medical and health sciencesMice0302 clinical medicineBreast cancerAntineoplastic Agents ImmunologicalTrastuzumabmedicineBiomarkers TumorTumor Cells CulturedGene silencingAnimalsHumansskin and connective tissue diseasesAutocrine signallingneoplasmsChemokine CCL5Neoadjuvant therapyCell Proliferationbusiness.industryGene Expression ProfilingTrastuzumabmedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticAutocrine Communication030104 developmental biologyOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchFemalebusinessmedicine.drugMolecular cancer therapeutics
researchProduct